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APPARATUS FOR IDENTIFYING AND
COMPARING LATTICE STRUCTURES AND
DETERMINING LATTICE STRUCTURE
SYMMETRIES

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND AND SUMMARY

This invention relates generally to apparatus and
methods for identifying lattice structures, and more
particularly to apparatus and methods for identifying
intralattice and interlattice relationships.

A knowledge of the nature of the lattice structure of
a material, as well as how it relates to the lattice struc-
tures of other materials, is essential in any systematic
analysis of physical properties, and has many important
commercial applications. For example, in crystallogra-
phy, it is important for further analysis and identifica-
tion of a crystalline structure under investigation to
determine its symmetry characteristics. As another ex-
ample, in materials design, once a new compound has
been synthesized with a sought-after property, it can be
extremely useful to the researcher to find all other mate-
rials that bear some specified lattice relationship. Thus,
for example, once related compounds have been identi-
fied which bear a given lattice relationship to a new
superconducting material, the related compounds can
then be evaluated to see if they also exhibit supercon-
ductivity.

As still other examples, it can be important for the
researcher to know whether two apparently different
materials exhibiting the same property have the same or
a derivative lattice relationship, or to identify an un-
known phase by matching the unknown against all
known lattice structures. Additionally, the researcher
may wish to analyze structural lattice relationships
within a large set of compounds, or between two sets of
compounds.

Heretofore, analysis of lattice structures, both to de-
termine intralattice relationships (e.g., lattice symme-
tries) and to determine interlattice relationships, has
been difficult, cumbersome and subject to substantial
error. For example, in the collection of crystallographic
data, the experimentalist traditionally has relied on fa-
- miliar or standard orientations to guide both the initial
collection of data and evaluation thereof to define the
lattice and the crystal symmetries. On a diffractometer,
for example, a conventional unit cell, as defined by the
magnitudes of the cell parameters, is determined and the
assumed Laue symmetry is verified by taking specially
oriented films or by checking the intensities of equiva-
lent (h,k,1)’s listed for standard orientations. While there
are many valid reasons for choosing conventional cells
and orientations in the latter stages of experimental

work, by choosing specific or familiar orientations in’

the initial stages, assumptions are made which influence
what data are collected, and consequently, mistakes are
more likely to be made.

In accordance with the present invention, a converse
transformation matrix generation approach is used ei-
ther i) to relate a lattice structure of one material to the
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lattice structure(s) of one or more other materials for
determining interlattice relationships which allow mate-
rials to be identified and classified relative to other
materials; or ii) to relate a lattice structure of a material
to itself for determining lattice symmetry. The matrix
approach is an extremely powerful, efficient and flexible
analytical tool which is readily implemented and avoids
the constraints and error inherent in the conventional
approaches heretofore used. For example, the matrix
approach is substantially more effective than prior ap-
proaches because it will maintain its selectivity in
matching lattice structures despite the rather large ex-
perimental errors that are routinely associated with
electron diffraction data. As another example, the deter-
mination of lattice symmetry using the matrix approach
of the present invention does not requireithat the lattice
and its symmetry be expressed with respect to a stan-
dard cell or a standard orientation. The properties of the
lattice are reflected in any primitive cell because trans-
lation of the primitive unit cell generates the entire
lattice. In accordance with the present invention, the
symmetry matrices which transform the lattice into
itself are generated, and are used to determine the met-
ric symmetry and any pseudosymmetry, as well as the
Laue symmetry, group-subgroup relationships, the na-
ture and directions of symmetry axes, and conventional
or standard cells. In addition, the determination of stan-
dard or conventional cells is greatly simplified. In con-
trast to other methods for determining standard cells,
the matrix approach of the present invention permits
working with symmetry directly in the form of matri-
ces, and not with the magnitude of lattice parameters
and their associated errors. Calculations are straightfor-
ward and a transformation matrix is found using linear
algebra techniques.

Still further, the matrix approach of the present in-
vention enables computer-based controllers for com-
mercial diffractometers (x-ray, neutron and electron) to
be implemented which fully automate the diffractome-
try process in a theoretically and experimentally correct
and error-free manner. Unlike procedures currently
used in diffractometry, errors in strategy are impossible
with the matrix approach because at each step exactly
the right data for control decisions are directly available
in a clear, logical and concise format. Since the matrix
approach is extremely reliable, its use will prevent er-
rors in symmetry and structure determinations, which is
widely recognized as a very serious current problem
resulting in erroneous symmetry determinations in
about five percent of the approximately 25,000 full
structure determinations carried out annually.

The matrix approach of the present invention also
enables electron diffractometry to be converted from a
two dimensional technique that focuses primarily on
d-spacings to a three dimensional technique similar to
that employed in single crystal x-ray and neutron dif-
fractometry. The ability to determine the cell structure
and symmetry from data collected on extremely small
samples and to identify the structure using computer-
ized databases of known structures represents a new and
comprehensive method to identify crystalline phases.

The matrix approach of the present invention thus
represents a powerful new strategy for lattice structure
analysis in which the emphasis is shifted from standard
cells and standard orientations to matrices.

A portion of the present invention’s matrix approach
to lattice analysis in the context of determining symme-
try has been discussed in detail by the present applicants
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in their article “A Matrix Approach to Symmetry”,
Acta Cryst. (1987) A43, pp. 375-384, which is hereby
incorporated by reference. However, no method for
generating the necessary symmetry matrices which
relate any observed primitive cell of a lattice to itself is
described in the aforesaid article, or in any other pub-
lished article. The general converse transformation
method described herein which applicants have devel-
oped generates matrices relating any two lattice cells
(including a lattice cell to itself); and can be used in new,
more efficacious methods for control of diffractome-
ters, and for phase identification using analytical elec-
tron microscope (AEM) data and existing large scale
databases providing chemical, physical and crystallo-
graphic data on solid-state materials.

Accordingly, it is a primary object of the present
invention to provide apparatus and methods for identi-
fying lattice structures using the converse transforma-
tion matrix generation method of the present invention.

It is a further primary object of the present invention
to provide apparatus and methods for identifying un-
known materials using electron diffraction and energy
dispersive spectroscopy data, available databases on
solid-state materials and the converse transformation
matrix generation method of the present invention.

1t is a still further primary object of the present inven-
tion to provide improved diffractometry apparatus and
methods using the converse transformation matrix gen-
eration method of the present invention.

In accordance with the present invention, a method
of comparing two crystalline materials to determine
whether they have a predetermined lattice structure
relationship therebetween comprises the steps of:

a) determining primitive lattice cells Y and Z, respec-
tively, for the two materials, the cells Y and Z having
three cell edges YA, YB, YC and ZA, ZB and ZC,
respectively, and three cell angles YAL, YBE, YGA
and ZAL, ZBE and ZGA, respectively;

b) generating all matrices H, if any, which transform
cell Z into cell Y within predetermined maximum cell
edge an angle tolerances TOLI1, TOLI2, TOLI3, and
TOLI4, TOLIS, TOLIS, respectively; and if at least one
matrix H is generated;

c) analyzing the nature of the generated matrix (ma-
trices) H and its inverse (their respective inverses) H' to
determine the nature of the lattice relationship:

1) If a matrix H has integer matrix elements and a
determinant HDET =1, then Cell Z and Cell Y define
the same lattice;

2) If a matrix H or its inverse H’ has integer matrix
elements and a determinant HDET greater than one,
then Cell Z and Cell Y are in a subcell/supercell rela-
tionship; or

3) If a matrix H and its inverse H' both have one or
more fractional matrix elements, then Cell Z and Cell Y
define lattices that are in a composite relationship.

In accordance with a further aspect of the present
invention, a method for analyzing the symmetry of a
crystalline material comprises the steps of:

a) collecting edge data ZA, ZB and ZC and angle
data ZAL, ZBE and ZGA defining any primitive lattice
cell Z of the material;

b) generating all symmetry matrices Hs which trans-
form cell Z into itself within predetermined maximum
cell edge and angle parameter tolerances TOLII,
TOLI2, TOLI3 and TOLI4, TOLIS, TOLIS, respec-
tively;

15

25

30

35

40

45

50

55

65

4

¢) determining the metric symmetry using symmetry
matrices Hs; and

d) defining the crystal symmetry using symmetry
matrices Hs.

In accordance with a still further aspect of the present
invention, a method for identifying an unknown crystal-
line material comprises the steps of;

a) determining a primitive lattice cell Z of the un-
known material, the cell Z having three cell edges ZA,
ZB, and ZC, respectively, and three cell angles ZAL,
ZBE, and ZGA, respectively;

b) determining the chemical composition of the un-
known material;

¢) searching a database comprising lattice cell data
and element type data for materials with known lattice
structures and chemical compositions by at least in part
generating matrices H identifying all compounds hav-
ing lattice cell structures related to cell Z;

d) analyzing the matrices H to identify which of the
compounds identified in step c) match cell Z by having
a lattice cell structure identical to or in a subcell/super-
cell derivative relationship to cell Z, and saving the
lattice cell matching compounds as a first data set;

e) searching the database for all compounds which
match the unknown material by having the same ele-
ment types as the unknown material, and saving the
element type matching compounds as a second data set;
and

f) combining the first and second data sets to derive
all known compounds having the same lattice cell struc-
ture and element types.

In accordance with another aspect of the present
invention, in each of the foregoing methods, the matri-
ces H are generated by a converse transformation
method comprising the steps of:

finding all matrix triples AU, AV, AW; BU, BV, BW;
CU, CV, CW which accomplish transformation of the
respective Z-cell edges to the corresponding edges of
the desired cell within the corresponding ones of the
maximum cell edge tolerances; and

finding all combinations of the matrix triples found in
the matrix-triple-finding step which accomplish trans-
formation of the respective Z-cell angles to the corre-
sponding angles of the desired cell within the corre-
sponding ones of the maximum acceptable cell angle
tolerances.

These and other objects, features and advantages of
the present invention will be described in or apparent
from the following detailed description of preferred
embodiments.

BRIEF DESCRIPTION OF THE DRAWING

The preferred embodiments will be described with
reference to the drawing, in which:

FIG. 1is a graphical representation of the parameters
of a primitive cell of a lattice structure.

FIGS. 2A-2B are a flow chart of a preferred embodi-
ment of the converse transformation matrix generation
method of the present invention.

FIGS. 3A-3C are a more detailed flow chart of a
preferred embodiment of step 60 shown in FIG. 2
which integrates steps 70 and 80 as part of step 60.

FIGS. 4A-4C are a more detailed flow chart of a
preferred embodiment of step 30 shown in FIG. 2.

FIG. § is a block diagram of analytical electron mi-
croscope apparatus according to the present invention
for identifying an unknown material.
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FIG. 6 is a flow chart of a preferred method of data
collection and analysis performed by the apparatus of
FIG. 5 according to the present invention.

FIG. 7 is a more detailed flow chart of a preferred
embodiment of step 130 in FIG. 6.

FIG. 8 is a block diagram of automated diffractome-
try apparatus according to the present invention for
symmetry analysis of a lattice structure.

FIG. 9 is a flow chart of a preferred method of data
collection and analysis performed by the apparatus of
FIG. 8.

FIG. 10 is a more detailed flow chart of a preferred
embodiment of step 950 in FIG. 9.

FIG. 11 is a more detailed flow chart of a first em-
bodiment of step 960 in FIG. 9.

FIG. 12 is a more detailed flow chart of a second
embodiment of step 960 in FIG. 9.

FIG. 13 is a more detailed flow chart of a third em-
bodiment of step 960 in FIG. 9.

FIG. 14 is a more detailed flow chart of a first em-
bodiment of step 1100 in FIGS. 12 and 13.

FIG. 15 is a more detailed flow chart of a second
embodiment of step 1100 in FIGS. 12 and 13.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, a primitive or conventional unit
cell of a lattice structure, which cell reflects all of the
properties of the lattice structure, is defined by six pa-
rameters, namely three cell edges a, b and c, and three
cell angles a, B and v, as shown. In accordance with the
present invention, the relationship between any two
lattice structures, and the symmetry characteristics of a
single lattice structure, can be determined by calculat-
ing in the following manner all 3X3 transformation
matrices H (if any) which have elements that are inte-
gers or simple rational numbers, and which relate the
two lattice cell structures (or the lattice structure to
itself) to within specified tolerances of the lattice cell
parameters. In other words cell Y=(H-Matrix) Z. The
transformation relationship can be represented as

CELLY  pppuy CELLZ
Yb hinmaha | zb
Ye Zc
Ya hat k22 B3 Za
b hythyy b3z | ZB
Yy Zy

Referring to FIG. 2, a preferred form of the converse
transformation matrix generation method of the present
invention which is adapted for computer implementa-
tion will be described with reference to two primitive
cells Y and Z, which can be the same cell if a symmetry
analysis is being performed on a lattice structure. It will
also be appreciated that when an unknown lattice struc-
ture is being identified, one of the cells may be derived
from a database or the like of known lattice structures.
In that case, cell Y defines a known lattice structure in
the database, and cell Z defines the unknown lattice
structure. Further, in the following description, the cell
edge parameters a, b and c of cells Y and Z will be
referred to as YA, YB, YC and ZA, ZB, ZC, respec-
tively; the cell angle parameters a, 8 and v of the cells
will be similarly referred to as YAL, YBE, YGA and
ZAL, ZBE and ZGA, respectively. The maximum
tolerances acceptable (input parameters) for relating
transformed CELL Z to CELL Y will be referred to as
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6
TOLI1, TOLI2, TOLI3, TOLI4, TOLIS, TOLIS, re-
spectively; whereas the actual tolerances found when
relating transformed CELL Z to CELL Y will be re-
ferred to as TOLA, TOLB, TOLC, TOLAL, TOLBE,
and TOLGA, respectively. By definition these actual
tolerances constitute the tolerance matrix T:

_tolatwlbrlc
~ tol atol Btol y

The first step 10 of the transformation matrix genera-
tion method of the present invention is to establish the
edge and angle parameters YA, YB, YC, YAL, YBE,
YGA ZA, AB, ZC, ZAL, ZBE and ZGA of cells Y and
Z, and to define the maximum acceptable tolerance
values TOLI1, TOLI2, TOLI3, TOLI4, TOLI5and
TOLI6. It will be appreciated that the primitive cell
parameters for an unknown lattice structure Z ca be
experimentally measured using conventional tech-
niques, such as x-ray diffractometry or analytical elec-
tron microscopy, for example. One preferred way to
obtain cell parameter data for an unknown lattice struc-
ture is to determine two planes of diffraction data in
reciprocal space. From the data on each plane and from
the orientation of the two planes with respect to each
other, a primitive cell in reciprocal space can be deter-
mined. The cell is then converted to direct space in
Angstrom units. Advantageously, the unknown lattice
cell Z also is reduced in a conventional manner. Fur-
ther, a reduced form of cell Y as well as cell Z is advan-
tageously used. The use of reduced cells speeds com-
puter processing and limits the matrix elements which
need to be considered. As noted above, it is not neces-
sary or even advantageous to determine a standard cell.
Further, if the cell determined is not a primitive cell, but
instead a supercell in reciprocal space (subcell in direct
space) because diffraction nodes were missed, analysis
of the lattice structure can still be carried out using the
matrix approach of the present invention.

Maximum tolerance values are selected according to
an assessment of the size of the experimental errors. By
setting large limits (e.g., 1.0 and 6.0 for the cell edges
and angles, respectively), all possible lattice relation-
ships/symmetries may be obtained. It will be appreci-
ated that the cell parameter and maximum tolerance
values are stored as data in a computer for computer
implementation of the transformation matrix generation
method of the present invention.

The next step (step 20 in FIG. 2) is to calculate the
dot products Z11, Z22, Z33, Z23, Z13 and Z12 for cell
Z (i.e., A.A, B.B, C.C, B.C, A.C and A.B), as follows:

Z11=ZA*ZA
Z22=ZB*ZB
Z33=2ZC*ZC
223=ZB*ZC*cos(ZAL/RADIAN)
Z13=ZA*ZC*cos(ZBE/RADIAN)

Z12=ZA*ZB*cos(ZGA/RADIAN)

where RADIAN=360/27,

In step 30, all of the matrix triples AU, AV, AW; BU,
BV, BW; and CU, CV; CW are respectively determined
(in the manner described hereinbelow) which transform
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the Z cell edges ZA, ZB and ZC into the Y cell edges
YA, YB and YC, respectively, within the respective
specified tolerance values TOLI1, TOLI2and TOLI3.

Next, the number of matrix triples determined in step
30 is tested in steps 40a and 40b to determine whether
no matrix triples were found (step 402) or a number of
matrix triples were found exceeding a predetermined
limit (e.g. 2000) (step 40b). If no matrix triples were
found, further computations are terminated and a new
cell Y is selected for comparison with cell Z in step 50a
(when the identity of the lattice structure correspond-
ing to cell Z is being sought). If too many matrix triples
are found, further computations are terminated and an
error signal is produced in step 505.

If at least one set, but not an excessive number, of
matrix triples are found in step 30, then all combinations
of those matrix triples found in step 30 are determined in
step 60 (in the manner described hereinbelow) which
also transform the Z cell angles ZAL, ZBE and ZGA
into the Y cell angles YAL, YBE and YGA, respec-
tively, within the respective specified tolerance values
TOLI4, TOLISand TOLI6. Each combination of ma-
trix triples found is saved as the elements Ul, V1, W1,
U2, V2, W2, U3, V3, W3 of a transformation matrix H.

The actual tolerances TOLA, TOLB, TOLC, TO-
LAL, TOLBE, TOLGA for each transformation ma-
trix H determined in step 60 are calculated in step 70,
and the inverse H' of each matrix H is calculated in step
80.

Referring to FIG. 3, a preferred method for deter-
mining the matrix triples in step 30 will now be de-
scribed. First, in step 301, a set of a predetermined num-
ber NHEL of possible integer and rational number val-
ues HEL(JJ), HEL(KK), HEL(LL) (JJ,KK,LL=1,2.
.. NHEL) for the elements of a transformation matrix H
are defined (stored). A typical range of values HEL is
—6=BEL =6, including both the integer values 1,
+2, £3, £4, x5, and %6, and the non-integer rational
number inverses thereof, i.e.,, =3, +3, =1, +1/5 and
+1/6. The range of values HEL is normally selected
based o the type of problem to be solved. With reduced
versions of cells Y and Z, for example, the range of
potential values for values HEL is reduced. In addition,
variable indicies ICTMA, ICTMB and ICTMC, which
are respectively used to identify the matrix triples AU,
AV, AW; BU, BV, BW; and CU, CV, CW determined
to transform the respective Z-cell edges into the corre-
sponding Y-cell edges within the respective specified
tolerances, as described hereinabove, are initialized to
zero.

In steps 302-310, variable indices JJ, KK and LL for
signifying individual ones of the values HEL and con-
trolling iteration of computation loops are initialized,
incremented and compared with NHEL in the sequence
shown to provide first, second and third nested compu-
tation loops using successive combinations of HEL(JJ),
HEL(KK) and HEL(LL) as described in more detail
hereinbelow.

Since JJ, KK, and LL initially are not greater than
NHEL, as determined in steps 304, 307 and 310, respec-
tively, a symmetrical dot product TZEE for trans-
formed cell Z is calculated in step 312 using values
HEL(JJ), HEL(KK) and HEL(LL) and dot products
Z11, 722, Z33, Z23, Z13 and Z12 for cell Z calculated
in step 20 (FIG. 2) as follows:

TZEE = HELQN)*HEL(JJ)*Z11 + HEL(KK)*HEL(KK)*Z22 +
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-continued
HEL(LLY*HEL(LL)*Z33 + 2.0 (HEL(KK)*HEL(LL)*Z23 +

HEL(J))*HEL(LL)*Z13 + HEL(J))*HEL(KK)*Z12)

It will be appreciated that the values HEL(JJ),

- HEL(KK) and HEL(LL) form a row of a transforma-

tion matrix and that the calculated dot product may
correspond to A.A, B.B or C.C depending on the order
of the matrix row in the final transformation matrix H.

Next, in step 314, dot product TZEE is tested to
determine whether it is greater than zero. If not, no
further computations are done using the current combi-
nation of values HEL, and the third computation loop
comprising steps 309-346 is restarted using a new value
of HEL(LL) by returning to step 309.

If TZEE>O0, then a transformed edge for cell Z,
TZEDG, is derived (step 316) as follows:

TZEDG = 4TZEE

Then TZEDG is tested (step 318) to determine whether
it constitutes a transformation of Z-cell edge ZA to
Y-cell edge YA within the specified tolerance TOLI1by

determining whether: '

(TOLI - | TZEDG— YA|)<0.

If the determination in step 318 is TRUE (i.e., the
foregoing inequality is FALSE) then the current values
of HEL(JJ), HEL(KK) and HEL(LL) from which
TZEDG was derived is a possible row in a transforma-
tion matrix H; and the counter ICTMA is thus incre-
mented (step 320), and the values HEL(JJ), HEL(KK)
and HEL(LL) are saved (step 322) as matrix triple AU-
(ICTMA), AV(ICTMA) and AW(ICTMA), respec-
tively. A value DA(ICTMA)=TZEDG —YA repre-
senting the actual tolerance (difference) between the
transformed Z cell edge A and the inputted Y-cell YA
is also calculated and saved (step 324); together with a
value TZA(ICTMA)=TZEDG as the transformed
Z-cell edge a parameter (step 326). The computation
then proceeds to step 328.

If a FALSE determination is made in step 318 (i.e.,
the inequality is TRUE), then TZEDG is similarly
tested in step 328 to determine whether it constitutes a
transformation of the Z-cell edge ZB to the Y-cell edge
YB within the specified tolerance TOL12, i.e., whether
(TOLI2— |TZEDG~YB|)<0. Similarly to steps
320-326, if the determination in step 328 is TRUE, then
the counter ICTMB is incremented (step 330); the cur-
rent values of HEL(JJ), HEL(KK) and HEL(LL) are
saved (step 332) as matrix triple BU(ICTMB),
BV(ICTMB), BW(ICTMB); values DB(ICTMB)=-
TZEDG —YB, and TZB(ICTMB)=TZEDG are cal-
culated and saved (steps 334-336); and the computation
proceeds to step 338.

If a FALSE determination is made in step 328, then
TZEDG is again similarly tested in step 338 with re-
spect to Y-cell edge YC to determine whether (TO-
LI3— |TZEDG —YB|)<0. Similarly to steps 320-326
and 330-336, if the determination in step 338 is TRUE,
then counter ICTMC is incremented (step 340); the
current values of HEL(JJ), HEL(KK) and HEL(LL)
are saved (step 342) as matrix triple CU(ICTMCQ),
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CV(ICTMC), CW(ICTMC); and values DC(ICTMC),
and TZCACTMC)=TZEDG are calcuated and saved
(steps 344-346). The third computation loop comprising
steps 309-346 is then repeated using a new value of
HEL(LL) by returning to step 309.

Similarly, if a FALSE determination is made in step
338, then the third computation loop comprising steps
309-346 is repeated using a new value of HEL(LL) by
returning to step 309. The third computation loop is
repeated using successive values HEL(LL) and the
same values HEL(JJ) and HEL(KK) until step 310
determines that indicia LL >NHEL, in which case the
second computation loop, comprising steps 306-346, is
restarted using the next value of HEL(KK) and the first
value HEL(LL) by returning to step 306. The second
computation loop is then successively repeated for each
new value HEL(KK) in conjunction with successive
nested repetition of the third computation loop for each
value HEL(LL) until step 307 determines that
KK >NHEL, in which case the first computation loop,
comprising steps 303-346, is restarted using the next
vatue of HEL(JJ) by returning to step 303. The first
computation loop is successively repeated for each new
value HEL(JJ) in conjunction with successive nested
repetition of the second and third computation loops as
before. When step 308 determines that JJ> NHEL, then
all combinations of HEL(JJ), HEL(KK) and HEL(LL)
have been used to determine all matrix triples which
potentially constitute elements of a desired transforma-
tion matrix H, and the determination of step 60 (FIG. 2)
is commenced.

Referring to FIG. 4, a preferred method of perform-
ing step 60 (determining which combinations of the
matrix triples found in step 30 also transform the Z-cell
angles into the corresponding Y-cell angles within the
specified tolerances) will now be described. In steps
601-606, variable indices I, J and K are initialized, and
indices J and K are incremented and compared with
ICTMA and ICTMB, respectively, in the sequence
shown to provide first and second nested computation
loops. Since J initially is not greater than ICTMA and K
initially is not greater than ICTMB, step 608 is then
performed, wherein a gamma value cos6 for trans-
formed cell TZ is derived by first calculating a first
unsymmetrical dot product TZEF1 as follows:

TZEF1 = AUQ)*BUK)*Z11 + AVI)*BVK)*Z22 +
AWJ)*BW(K)*Z33 + (AVJ)*BWK) + AWJ)*BV(K)*Z23 +

(AUJY*BW(K) + AW(D*BUK))*Z13 + (AUJ)*BV(K) +
AVJ)*BUKK))*Z12

Gamma value cos6 is then calculated as follows:
cosé=TZEF1/(TZA(J)* TZB(K)).

Gamma value cos6 is then tested (step 610) to deter-
mine whether cos6Z 1 or cos6=(— 1) (step 610a); and if
FALSE, cos6 is converted to degrees by computing
TZGA=(cos—! (cos6 ))*RADIAN (step 610b), and
further tested (step 610c) to determine whether the
current pair of matrix triples transforms Z-cell angle
ZGA to Y-cell angle YGA within the specified toler-
ance TOLI6by determining whether:

TOLI6— |(TZGA~ YGA)| <0
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If the determination in step 610a is TRUE (i.e., cos6
is not within the +1 range), or if the determination in
step 610c is FALSE (i.e., the inequality is TRUE), then
no further computations are performed with the current
pair of matrix triples AU({J), AV({J), AW({J) AND
BU(K), BV(K), BW(K), and the second computation
loop, comprising steps 605-680 is restarted using an
incremented value of K by returning to step 605.

If the determination in step 610c is TRUE (i.e., the
inequality is FALSE), then a third computation loop
comprising steps 611-680 is commenced by initializing
variable indicia L, incrementing indicia L and testing L
to determine whether it is greater than ICTMC in suc-
cessive steps 611-613 as shown.

Next, the transformation matrix determinant HDET
is calculated (step 614) using the current set of matrix
triples AU(QJ), AV(J), AW(J);, BUKK), BV(K), BW(K);
CU(L), CV(L); CW(L) as follows:

HDET = AUJY*BVK)*CW(L) + AVUJ)*BW(K)*CU(L) +
AWJ)*BUK)*CV (L) — CUL)*BVK)*AW()) —

CH(LY*BW(K)*AU(J) — CW(LY*BUK)*AV())

Determinant HDET is then tested (step 616) to deter-
mine whether HDET=0. If the determination is
TRUE, then no further computations are performed
using the current set of matrix triples, and the third
computation loop is restarted by returning to step 612.

If the determination in step 616 is FALSE, then an
alpha value cos4 is calculated (step 618) similarly to
gamma value cos6 by calculating a second unsymmetri-
cal dot product
TZEF2=BUK)*CUL)*Z11+BV(K)*CV(L)*Z22+ B-
W(K)*CH(LY*Z33+(BW(K)*CW(L)+BW(K)*CV(L))-
*Z23+(BUK)*CW(L)Y+BW(Ky*CU(L))*Z13+-
(BUK)Y*CV(L)+BV(K)*CU(L))* Z12; and then setting
cosd=TZEF2/(TZB(K)*TZC(L)). Alpha value cos4 is
then tested in step 620 similarly to the tests performed
on gamma value cos6 in step 610. As in the case of
gamma value cos6, if the determination in step 620a is
that cos4 is not within the = 1 range or if the determina-
tion in step 620c is FALSE, then no further computa-
tions are performed with the current set of matrix triples
and the third computation loop is restarted, by return-
ing to step 612.

If the determination in step 620c is TRUE, then a beta
value cos5 is calculated and tested similarly to alpha
value cos4 in steps 622-624¢, with:

TZEF3 = AUQJ)*CU(L)*Z11 + (AV(J)*CV(L)*Z22 +
AW()*CW(L)*Z33 + (AV(J)*CW(L) +
AWJ)*CV(L))*Z23 + (AUQ)*CW(L) +
AW)*CUL)*Z13 + (AUQ)*CV(L) +
AV(J)*CU(L))*Z12; and

cosS = TZEF3/(TEA(J)*TZC(L))

As in the cases of gamma value cos6 and alpha value
cos4, if the determination in step 624¢ is that cos5 is not
within the =* 1 range or if the determination in step 624¢
is FALSE, then no further computations are performed
with the current set of matrix triples and the third com-
putation loop is restarted, by returning to step 612.

If the determination in step 624c is TRUE, then the
current set of three matrix triples constitutes a desired
transformation matrix H. Matrix variable I is incre-
mented (step 626), and the matrix triple elements are
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saved (stored) (step 628) as transformation matrix H(I)
elements Ul, VI, W1, U2, V2, W2, U3, V3 and W3 as
follows:

Ul = AUQ)
VI = AV()
Wi = AW(J)
U2 = BUK)
V2 = BV(K)
W2 = BW(K)
U3 = CU(L)
V3= CV(QL)
W3 = CW(L)

Preferably, as part of the same computation loop,
steps 70 and 80 (FIG. 2) described hereinabove are also
performed as steps 670 and 680, respectively; with the
actual tolerances for matrix H(I) being calculated as
follows: -

TOLA=DA(J)
TOLB=DB(K)
TOLC=DC(L)
TOLGA=TZAL~YAL
TOLBE=TZBE~YBE
TOLGA=TZGA— YGA;

and the elements Ull, VI1, WI1, UI2, VI2, WI2, UI3,
VI3, WI3of the inverse H'(I) of the transformation ma-
trix H(I) being calculated as follows:
UN=(12*W3—-V3*W2)/HDET
Vil=—(V1*W3—-V3*W1)/HDET
WH=(V1*W2— N2*W1)/HDET
UR=—(2*W3-U3*W2)/HDET

VR=(U\*W3—-U3*W1)/HDET
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W= —(Ui*W2— L2*W1)/HDET
UR=(L2*V3—-U3*V2)/HDET
V3= —(U1*V3-U3*WV1)/HDET
WD =(U1*V2—U2*V1)/HDET

The third computation loop of steps 612-680 is then
restarted by returning to step 612, until step 613 deter-
mines that L >ICTMC, in which case the second com-
putation loop of steps 605-680 is repeated with an incre-
mented K indicia by returning to step 605. The second
computation loop (which includes the nested third com-
putation loop of steps 612-680) is repeated until step 606
determines that K>ICTMB, in which case the first
computation loop of steps 602-680 is repeated with an
incremented J indicia by returning to step 602. This
computation loop (which includes the nested second
and third computation loops) is repeated until step 605
determines that J>ICTMA, in which case the transfor-
mation matrix determination method is completed and
all of the desired transformation matrices H(I) have
been generated, and the transformation matrix determi-
nation method can be restarted with a new cell Z and-
Jorcell Y. )

A commented listing of a computer program which
implements the methods shown in FIGS. 2-4 follows.
(The program is written to print each matrix H and the
associated inverse, actual tolerances and matrix deter-
minant at the end of the third computation loop of step
60. Accordingly, no indicia I is provided for storing
data for multiple matrices H(I) as in the flow chart of
FIG. 4.) The program is written in ANSI standard
FORTRAN, and is designed to be transportable and
readily encoded for execution on all types of computers,
whether independently or integrated in other programs,
such as, for example, control programs associated with
diffractometers. It will be appreciated that the program
could be shortened by replacing portions of the code
with calls to subroutines. However, such calls signifi-
cantly increase the CPU execution time.

COPYRIGHT 1989 U.S. Secretary of Commerce, as represented by the National
Institute for Standards and Technology, on behalf of the United States of

America
1218 SUBROUTINE HMATRX
1219 DIMENSION AU(2000).AV(2000) .AW(2000)
1220 DIMENSION BU(2000),Bv(2000),BW(2008)
1221 DIMENSION CU(2000),CV(2000),CW(2000)
1222 DIMENSION DA(2000) ,DB(2000) ,DC(2000)
1223 DIMENSION TZA(ZGO@).TZB(ZQOG).TZC(ZQGB)
1224 C
1225 COMMON /HCELL1/ YA,YB,YC,YAL,YBE,YGA,YV
1226 COMMON /HCELL2/ ZA,ZB,ZC,ZAL,ZBE,2GA,ZV
1227 COMMON /HDET1/ HDET ' .
1228 COMMON /HELEM1/ NHEL
1229 COMMON /HELEM2/ HEL(99)
1230 COMMON /HTOL1/ TOLI1,TOLI2,TOLI3,TOLI4,TOLIS,.TOLI6
1231 COMMON /HTOL2/ TOLA,TOLB.TOLC, TOLAL, TOLBE, TOLGA
1232 C
1233 COMMON /CONST1/ RADIAN
1234 COMMON /INVER1/ UI1,VI1 yWIT, UI2,VI2,WI2,UI3,VI3 WI3
1235 COMMON /MATR1/ UT,V1,W1,U2,V2,W2,U3,V3, W3
1236 COMMON /UNIT2/ IUNITB
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COMMON /CK@5/ ICKe51

SUBROUTINE * "HMATRX '

CALCULATES THE MATRICES (H) RELATING TWO OR
MORE LATTICES

THE TRANSFORMATION IS DEFINED BY THE EQUATION
Y = (H MATRIX) Z -

HEL = INPUT MATRIX ELEMENT — A POSSIBLE ELEMENT IN A MATRIX H

NHEL '= NUMBER OF INPUT MATRIX ELEMENTS

UT,V1,W1,U2,V2,W2,U3,V3,W3 = A TRANSFORMATION MATRIX RELATING
4 TO Y WITHIN THE SPECIFIED TOLERANCES - BY DEFINITION
THIS IS A MATRIX H

UIt, VIt ,Wi1,Ul12,VI2,WI2,UI3,VI3,WI3 = INVERSE OF MATRIX H

HDET = H MATRIX DETERMINANT

YA,YB,YC,YAL,YBE,YGA = INPUT CELL PARAMETERS FOR CELL Y

ZA,ZB,ZC,ZAL,ZBE,ZGA = INPUT CELL PARAMETERS FOR CELL Z

211,222,7233,223,213,212 = DOT PRODUCTS (A.A B.B C.C
B.C A.C A. B) FOR CELL Z

AU,AV, AW = MATRIX TRIPLE TRANSFORMING A—CELL EDGE OF Z TO
YA WITHIN THE SPECIFIED TOLERANCE (TOLI1)

DA = DIFFERENCE BETWEEN A—CELL EDGES (TRANSFORMED Z - Y)

ICTMA = NUMBER OF MATRIX TRIPLES SAVED (DIMENSION OF ARRAYS
AU,AV,AW,DA,TZA)

BU,BV.BW,DB,ICTMB = ANALOGOUS TO DEFINITIONS FOR CELL EDGE A

CU,CV,CW,DC,ICTMC = ANALOGOUS TO DEFINITIONS FOR CELL EDGE A

TZA,TZB,TZC,TZAL,TZBE,TZGA = TRANSFORMED CELL PARAMETERS FOR
Z (TRANSFORMED BY POSSIBLE ROW(S) IN MATRIX H)

TZEDG = A OR B OR C FOR TRANSFORMED CELL Z

TZEE = SYMMETRICAL DOT PRODUCTS (A.A OR B.B OR C.C) FOR
TRANSFORMED CELL Z

TZEF = UNSYMMETRICAL DOT PRODUCTS {(B.C.OR A.C OR A.B) °FOR
TRANSFORMED CELL Z . «

TOLI1,TOLI2.TOLI3, TOLI4,TOLIS,TOLI6 = INPUT VALUES FOR
MAXTMUM TOLERANCE ACCEPTABLE FOR RELATING TRANSFORMED
- CELL Z TO CELL Y
TOLA, TOLB, TOLC,TOLAL, TOLBE,TOLGA = ACTUAL TOLERANCES FOUND
‘ WHEN RELATING TRANSFORMED CELL Z TO CELL Y - BY
DEFINITION, THIS 1S THE TOLERANCE MATRIX

COMPUTING NOTE (1987) — THIS ROUTINE COULD BE SHORTENED BY
REPLACING CODE WITH CALLS TO SUBROUTINES. HOWEVER, THESE
CALLS *SIGNIFICANTLYs INCREASE THE CPU TIME.

—— CALCULATE DOT PRODUCTS FOR CELL Z

211 = ZAeZA

222 = IB+ZB

233 = ZCsZC

223 =.ZB+ZC+COS(ZAL/RADIAN)
213 = ZA+ZC+COS(ZBE/RADIAN)
212 =

ZA*ZB+COS(ZGA/RADIAN)
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1382 C — INITIALIZE VARIABLES
1303 ICTMA = ©
1304 ICTMB = @
1305 ICTMC = @
1366 C
1367 C —— FIND MATRIX TRIPLES WHICH SATISFY TRANSFORMATION
1308 C OF CELL EDGES (ONLY)
13e8 DO 270 JJ = 1,NHEL '
1310 DO 260 KK = 1,NHEL
131 DO 250 LL = 1,NHEL
1312 C ‘
1313 C —— CALCULATE SYMMETRICAL DOT PRODUCTS FOR TRANSFORMED
1314 C CELL Z. INPUT MATRIX ELEMENTS ARE USED TO FORM A
1315 C ROW OF A TRANSFORMATION MATRIX. DOT PRODUCT MAY BE
1316 C A.A, B.B, OR C.C DEPENDING ON ORDER OF MATRIX
1317 C ROW IN FINAL TRANSFORMATION MATRIX H. '

1318 TZEE = HEL(JJ)*HEL(JJ)sZ11 + HEL(KK)*HEL(KK)*222 +

1319 $ HEL(LL) #HEL(LL)+Z33 +

1320 $ 2.0+ (HEL(KK)sHEL(LL)#Z23 + HEL(JJ)*HEL(LL)$Z13 +
1321 $ HEL(JJ)*HEL(KK)¢Z12)

1322 ¢ :

1323 IF(TZEE.LE.©.0) GO TO 248

1324 ¢

1325 C ~—— CALCULATE TRANSFORMED CELL EDGE FOR CELL Z
1326 TZEDG = SQRT(TZEE)

1327 ¢

1328 ¢

1320 ¢

1330 C —— TEST WHETHER MATRIX TRIPLE TRANSFORMS A—CELL
1331 ¢ EDGE FOR Z TO YA WITHIN THE SPECIFIED TOLERANCE
1332 IF((TOLI1~ABS(TZEDG-YA)).LT.©.8) GO TO 200

1333 ¢

1334 ¢ —— MATRIX TRIPLE IS A POSSIBLE ROW IN A

1335 ¢ MATRIX H, SAVE MATRIX ROW, ACTUAL

1336 C TOLERANCE, TRANSFORMED CELL EDGE FOR Z
1337 ICTMA = ICTMA + 1

1338 C

1339 AU(ICTMA) = HEL(JJ)

1340 AV(ICTMA) = HEL(KK)

1341 AW(ICTMA) = HEL(LL)

1342 DA(ICTMA) = TZEDG ~ YA

1343 TZA(ICTMA) & TZEDG

1344 200 CONT INUE :

1345 C

1346 C

1347 C

1348 C — TEST WHETHER MATRIX TRIPLE TRANSFORMS B—CELL
1349 C EDGE FOR Z TO YB WITHIN THE SPECIFIED TOLERANC
1350 IF((TOLI2-ABS(TZEDG-YB)).LT.2.8) GO TO 210

1351 C

1352 C ~ —— MATRIX TRIPLE IS A POSSIBLE ROW IN A

1353 C MATRIX H, SAVE MATRIX ROW, ACTUAL

1354 C TOLERANCE, TRANSFORMED CELL EDGE FOR Z
1355 ICTMB = ICTMB + 1 X

1356 C A

1357 BU(ICTMB) = HEL(JJ)

1358 BV(ICTMB) = HEL(KK)

1359 . BW(ICTMB) = HEL(LL)

1360 . DB(ICTMB) = TZEDG - YB

1361 TZB(ICTMB) = TZEDG

1362 210 CONTINUE

1363 C

1364 C

1365 C :

1366 C ~—— TEST WHETHER MATRIX TRIPLE TRANSFORMS C-CELL
1367 € EDGE FOR Z TO YC WITHIN THE SPECIFIED TOLERANC

1368 IF((TOLI3-ABS(TZEDG-YC)).LT.2.0) GO TO 220
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-— MATRIX TRIPLE IS A POSSIBLE ROW IN A
MATRIX H, SAVE MATRIX ROW, ACTUAL
TOLERANCE, TRANSFORMED CELL EDGE FOR Z

ICTMC = ICTMC + 1

CU(ICTMC) = HEL(JJ)
CV(ICTMC) = HEL(KK)
CW(ICTMC) = HEL(LL)
DC(ICTMC) = TZEDG - YC
TZC(ICTMC) = TZEDG
CONTINUE
CONT INUE
CONTINUE
CONT INUE
CONTINUE
—— FOR CHECKING ... PRINT NUMBER OF MATRIX ROWS SATISFYING

TRANSFORMATION OF CELL EDGES A,B,C (ONLY), RESPECTIVELY
IF(ICK®51.EQ.1) WRITE(IUNITB,9508) ICTMA,ICTMB, ICTMC

—— IF NO MATRIX TRIPLES ARE FOUND THAT TRANSFORM
CELL EDGES FOR Z TO Y, GO TO NEXT PROBLEM
IF(ICTMA.LE.®.OR.ICTMB.LE.@.OR.ICTMC.LE.®) GO TO soe

—— IF TOO MANY MATRIX TRIPLES ARE GENERATED,
WRITE ERROR MESSAGE AND STOP PROGRAM EXECUTION

IF(ICTMA. LE.2000.AND. ICTMB. LE. 2080.AND. ICTMC.LE.2000) GO TO 30e
WRITE(IUNITB,6000)
STOP

388 CONTINUE

OOO0O0O

OO0OO0O

AN

OO0 O

—— STARTING WITH MATRIX TRIPLES SATISFYING TRANSFORMATION
OF CELL EDGES (FOR Z TO Y), DETERMINE WHICH COMBINATIONS
ALSO TRANSFORM CELL ANGLES

DO 565 J = 1,ICTMA

DO 555 K = 1,ICTMB

—— CALCULATE GAMMA FOR TRANSFORMED CELL Z
AND CHECK WHETHER [T IS WITHIN
SPECIFIED TOLERANCES

TZEF = AU(J)+BU(K)*Z11 + AV(J)«BV(K)#Z22 +

AW(J ) sBW(K)*Z33 + .
(AV(J)*BW(K) + AW(J)BV(K))*Z23 +
(AU(J)oBW(K) + AW(J)eBU(K))s2Z13 +
(AU(J)*BV(K) + AV(J)eBU(K))*Z12

COS6 = TZEF/(TZA(J)+TZB(K))

IF(COS6.GE.1.0.0R.COS6.LE.~1.8) GO TO 550
TZGA = (ACOS(COS6))*RADIAN
IF((TOLI6~ABS(TZGA-YGA)).LT-0.0) GO TO 550

DO 545 L = 1,ICTMC
—— DETERMINANT OF ‘A MATRIX H WILL BE POSITIVE -

IF NOT, CHECK NEXT COMBINATION OF MATRIX TRIPLE
HDET = AU(J)*BV(K)+CW(L) + AV(J)=BW(K)eCU(L) +

$ AW(J)«BU(K)*CV(L) — CU(L)*BV(K)sAW(J) ~
$ , CV(L)*BW(K)+AU(J) — CW(L)*BU(K)=AV(J)
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IF(HDET.LE.2.8) GO TO 548

—— CALCULATE ALPHA FOR TRANSFORMED CELL Z
AND CHECK WHETHER IT IS WITHIN
SPECIFIED TOLERANCES

TZEF = BU(K)*CU(L)*Z11 + BV(K)+CV(L)*Z22 +

BW(K) «CW(L)*2Z33 +

(BV(K)=CW(L) + BW(K)+CV(L))*2Z23 +
(BU(K)*+CW(L) + BW(K)sCU(L))+Z13 +
(BU(K)+CV(L) + BV(K)+CU(L))+Z12

COS4 = TZEF/(TZB(K)sTZC(L))

IF(COS4.GE.1.0.0R.C0OS4.LE.~1.8) GO TO 540
TZAL = (ACOS(COS4))RADIAN
IF((TOLI4~ABS(TZAL-YAL)).LT.8.8) GO TO 546

—— CALCULATE BETA FOR TRANSFORMED CELL 2
AND CHECK WHETHER IT IS WITHIN
SPECIFIED TOLERANCES

TZEF = AU(J)eCU(L)*Z11 + AV(J)sCV(L)s222 +

AW(J) sCW(L)#Z33 +

(AV(J)*CW(L) + AW(J)*CV(L))sZ23 +
(AU(J)»CW(L) + AW(J)*CU(L))*Z13 +
(AUCJ)+CV(L) + AV(J)sCU(L))eZ12

COS5 = TZEF/(TZA(J)sTZC(L))
IF(COS5.GE.1.0.0R.COS5.LE.~1.8) GO TO 540
TZBE = (ACOS(COSS5))sRADIAN

IF((TOLI5-ABS(TZBE-YBE)).LT.®.8) GO TO 540
—— THIS COMBINATION OF THREE MATRIX TRIPLES

TRANSFORMS CELL Z 7O CELL Y WITHIN
THE SPECIFIED TOLERANCES -~ ASSIGN
THE® ELEMENTS TO THE MATRIX H

U1 = AU(J)

Vi = AV(J)

Wi = AW(J)

U2 = BU(K)

V2 = BV(K)

w2 = BW(K)

U3 = cu(L)

v3 = cv(L)

w3 = cw(L)

—— ASSIGN AND CALCULATE VALUES FOR
TOLERANCE MATRIX

TOLA = DA(J)

TOLB = DB(K)

TOLC = DC(L)

TOLAL = TZAL - YAL

TOLBE = TZBE - YBE

TOLGA = TZGA -~ YGA

—— CALCULATE INVERSE

U1 = (V2+W3 — V3eW2)/HDET

VI1 = =(V1eW3 — V3eW1)/HDET

WI1 = (V1eW2 — V2eW1)/HDET

UI2 = —(U2+W3 — U3+W2)/HDET

VI2 = (U1eW3 — U3eW1)/HDET

WI2 = =(Ui+W2 — U2eW1)/HDET

UI3 = (U2eV3 - U3#V2)/HDET

VI3 = —(U1sV3 — U3#V1)/HDET

WI3 = (U1sV2 — U2eV1)/HDET
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540
545 CONTINUE

OO0

CONTINUE
CONTINUE

550
555

565 CONTINUE

900 CONTINUE
RETURN

END

Referring to FIGS. 5-7, a method for phase identifi- ,
cation of an unknown crystalline material utilizing the
converse transformation method according to the pres-
ent invention will now be described which is particu-
larly suited for computer implementation and use with
electron diffraction and energy dispersive x-ray spec-
troscopy data obtained from analytical electron micro-
scopes (AEM) or single-crystal X-ray diffractometers,
and the large databases on solid-state materials which
have now been compiled.

Referring specifically to FIGS. § and 6 the first two
steps are to determine (step 100) any primitive cell Z
that characterizes the unknown lattice structure and to
determine (step 120) the chemical composition of the
unknown lattice structure. These two steps may be
accomplished in any conventional manner, such as by
using a conventional AEM 92. Preferably, primitive cell
Z is determined in the manner described hereinabove
with respect to step 10 of FIG. 2 using a sample A of the
material under study. The chemistry of the unknown
material is then determined using conventional tech-
niques on precisely the same sample A used to deter-
mine primitive cell Z in step 10. Both the elements
present as well as the elements absent in the sample are
determined. This can be done efficiently using conven-
tional energy dispersive x-ray spectroscopy (EDS) 50
techniques. The sample cell and chemistry data is fed to
a data analysis computer 94 which executes the follow-
ing computations. :

The next step (step 130) is to have computer 94 search
a database 96 of materials with known lattice structures
to find all compounds that have a lattice structure re-
lated to that of the unknown material. One suitable
database is NIST CRYSTAL DATA, a large computer
accessible database containing chemical, physical and
crystallopgraphic data on approximately 140,000 solid- 60
state materials, including all commonly occuring mate-
rials, which has been complied and evaluated by the
NIST Crystal Data Center, United States National In-
stitute of Standards and Technology. In the NIST
CRYSTAL DATA database, the lattice structure of
each material is represented by its standard reduced
cell.

35

CONTINUE

6008 FORMAT(////1X, " sHMATRXs ERROR
$ows hove been genercted.'/1X,
$array sizes must be changed.’

9500 FORMAT(1X,’'ICTMA =',15,5X, 'ICTMB =',15,5X,’ICTMC =",15//)
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— WRITE MATRIX AND INVERSE,
TOLERANCES, DETERMINANT
CALL OUTPT2(7)

. More than 2000 possible matrix r
19X, 'Input paraometers and/or program

)

The converse transformation matrix generation
method of the present invention advantageously is used
by computer 94 to perform the lattice matching of step
130. However, in order to enhance the computer speed
of the matching process, step 130 preferably comprises
a first matching step 132 using a reduction technique as
follows, followed by a second matching step 134 using
the converse transformation matrix generation method.
Referring specifcally to FIG. 7, it is assumed that the
primitive cell determination of step 10 (FIG. 5) included
reduction of the cell to provide a reduced cell RZ, and
that the lattice data in database A is in the form of stan-
dard reduced cells, as is the case with the NIST CRYS-
TAL DATA database. The reduced cell RZ is first
searched (step 132a) against database 96 for a match on
cell edges but not cell angles. In step 1325, derivative
supercells and subcells DSZ are calculated for cell RZ.
In step 132¢, derivative cells DSZ are reduced and
searched against database 96 for a match of cell edges
but not cell angles. Finally, in step 1324 , the matches
found in steps 1322 and 132c¢ are saved as a set P for
further processing in step 134.

A computer program developed by applicants,
NBS*SEARCH, which is publicly available from The
National Institute of Standards and Technology, advan-
tageously is used to carry out step 132. The
NBS*SEARCH program is highly efficient because it
uses a grouped-entry direct access search strategy, the
underlying theory of which is described in applicants’
publications: “NBS*SEARCH, A Program to Search
NBS CRYSTAL DATA”, Version of Spring, 1987,
NBS Crystal Data Center, Nat’l Bur. of Standards;
“NBS*LATTICE: A Program to Analyze Lattice Re-
lationships,” U.S. Nat’l Bur. Standards Tech. Note 1214
(1985), and “Compound Identification and Character-
ization using Lattice-Formula Matching Techniques”,
Acta Cryst. A42 (1986), pp. 101-105. Although the
NBS*SEARCH program can be used to match on an-
gles as well as edges, it is far more reliable to carry out
a full lattice match using the converse transformation
matrix procedure of the present invention.

It will be appreciated from the foregoing that use of
the converse transformation matrix method of the pres-
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ent invention in step 134 following step 132 entails com-
paring both the edge and angle parameters of reduced
cell RZ of the unknown material with the limited set P
of possible matching lattices derived in step 132 by
finding, for each of the known lattice cells Y in set P, all
matrices H (if they exist) that relate cell RZ to the
known lattice cell (Y) to within specified tolerances of
the lattice parameters.

Next, in step 140 (FIG. 6), the H-matrix data gener-
ated in step 130 is analyzed to determine the relationship
of the unknown material lattice structure to the known
lattice structures determined to be matching lattice
structures in step 130. The following relationships are
readily ascertainable:

a) Unknown cell Z and a matching known cell Y
define the same lattice structure if step 130 finds a ma-
trix H with integer elements U1-U3, V1-V3, and
W1-W3 and a determinant HDET =1 that will trans-
form cell Z to cell Y. If both cells Y and Z are reduced,
then only the following values for each matrix element
need to be considered: —1, 0, and 1.

b) Unknown cell Z and a matching known cell Y
define lattice structures that are in a derivative subcell
or supercell relationship if step 130 finds a matrix H
such that either i) the matrix H has integer elements, a
determinant HDET > 1 and will transform cell Z to cell
Y; or ii) its inverse matrix H' has integer elements, a
determinant HDET > 1, and will transform cell Y to
cell Z. A typical range of matrix elements in such a case
includes the integer and non-integer reciprocals thereof

in the range +6, i.e., —6, —5, —4, —3, —2, —1, —},

_§; _%, —1/5 O) 1/5: iy é; %9 l) 29 31 4: 51 6.

c) Unknown cell Z and matching known cell Y define
lattice structures that are in a composite relationship if
step 130 finds a matrix H such that i) the matrix H has
one or more fractional elements and will transform cell
Z to cell Y; and ii) its matrix inverse H’ also has one or
more fractional elements and will transform cell Y to
cell Z. A typical range of matrix elements in such a case
includes the integers and non-integer reciprocals
thereof in the range £6,i.e., —6, —5, —4, —3, —2, —1,
—3, —4, -4, —-1/50,1/54,3,4,1,2,3,4,5and 6.

It will be appreciated that in most phase characteriza-
tion studies, only the first two relationships described
above are of interest. Routinely checking for sub/super-
lattice relationships is particularly useful in that it per-
mits identification despite certain categories of experi-
mental errors. The known lattices cells Z determined to
have either the same or a sub- or super-cell relationship
to unknown cell Y are thus advantageously stored as a
first data set 1.

In the next step 150, database 96 is searched to deter-
mine all known compounds with the same elemental
composition as the unknown material. The results of the
search are saved in a second data set 2. With the NIST
CRYSTAL DATA database, this is a straightforward
operation, since the database contains an empirical for-
mula with the elements in alphabetical order for each
material. Preferably, the element search is set to find all
database compounds that have precisely the same ele-
ments as the unknown and no other elements. In this
type of search, knowledge of the elements not present
allows the database to be screened to usually obtain a
highly limited set of potential matches.
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Finally, in step 160, the unknown material is identi-
fied by analyzing the results of steps 140 and 150. Ad-
vantageously, this is done simply by logically combin-
ing the data sets 1 and 2 using the Boolean AND opera-
tion to form a third data set 3 containing the data entries
which are present in both sets 1 and 2. Hence, the
entries in data set 3 have the same lattice structure and
element types as the unknown material. Since research
work has shown that materials can be accurately char-
acterized on the basis of their lattice structures and
chemical composition, it can be reasonably assumed
that if an unknown material has the same lattice struc-
ture and “element types” as a known material in data-
base A, the unknown material is the same compound.

The use of the converse transformation matrix gener-
ation method of the present invention in conjunction
with symmetry analysis of lattice structures by an auto-
mated diffractometer will now be described. Referring
to FIG. 8, an automated diffractometer according to the
present invention comprises a conventional diffractom-
eter 900 which includes a microprocessor-based con-
troller 902 for controlling the orientation of a sample A
relative to the diffractometer, and detecting and analyz-
ing the diffraction signal data produced by the diffrac-
tometer. Referring to FIG. 9, the analysis of lattice
symmetry according to the present invention is accom-
plished by collecting edge and angle parameter data
with diffractometer 900 (step 910); defining any primi-
tive cell and using the converse transformation matrix
generation method of the present invention described
hereinabove to generate a set (or sets) of symmetry
matrices Hs which transforms the primitive cell into
itself (step 920). More specifically, the symmetry matri-
ces Hs in the following equation are determined:

a;= 2 Hsjja; (i j=1,2,3),
J

where a;and a;define two primitive triplets of noncopla-
nar translations. Only matrices Hs with integer elements
and a determinant HDET of +1 are considered. The
primitive cell advantageously is defined as described
hereinabove in connection with step 10 of FIG. 2. It
will be appreciated that the data collection can be car-
ried out by diffractometer 900 with respect to any basis.
The next step (930) is to determine the metric symme-
try, which is accomplished through analysis of the tol-
erance matrices generated with the matrices Hs pro-
duced in step 920, and to assess the experimental error
of unit cell parameters (which errors are directly related
to the refined cell parameters). As discussed herein-
above, generated with each symmetry matrix Hs is a
tolerance matrix T, .which represents the tolerances
(either absolute or relative percentage tolerances) in the
cell parameters required to transform the primitive cell
into itself by the specified matrix Hs. If the converse
transformation method of the present invention gener-
ates a symmetry matrix Hs having a tolerance matrix:

tol b
tol 8

tol ¢
tol y

tol a
tol a

then the transformation of a first cell by the matrix Hs
will produce a second cell having the parameters
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a'=a+ tola b =b+tolb ¢’=c+ tolc
a =a+tola B =B+tlfB y =y +toly

Thus the matrix method of the present invention ena-
bles a direct comparison of the calculated errors with
the experimental errors for the refined unit cell. Fur-
ther, by initially assuming very large experimental er-
rors, a menu of all possible symmetries can be obtained
from which the highest possible metric symmetry can
be determined.

By analyzing the symmetry matrices Hs and associ-
ated tolerance matrices T, the metric symmetry groups
are defined. The tolerance matrices T for the group(s)
of symmetry matrices indicate precisely how the ini-
tially selected primitive cell deviates from exact metric
symmetry and pseudosymmetry. In theory, it is the
nature of the matrices themselves that defines the sets to
be analyzed (i.e., those defining a symmetry group). In
practice, however, the usual result is that the tolerance
matrices alone clearly define the groups. Thus, with this
approach, all possible symmetries and pseudosymme-
tries to within any specified maximum acceptable toler-
ance are immediately apparent. After a group of sym-
metry matrices Hs has been determined, the metric
symmetry is deduced simply by counting the number of
matrices in the group. The greater is the number of
matrices, the higher is the symmetry. For example, the
numbers of matrices for the seven lattice metric symme-
tries are: anorthic (triclinic): one; monoclinic: two; or-
thorhombic: four; rhombohedral: six; tetragonal: eight;
hexagonal: twelve; and cubic: twenty-four.

When the symmetry matrices are used to transform
an experimentally determined unit cell, metrically simi-
lar unit cells are generated. If the lattice symmetry
elements correspond to crystallographic symmetry ele-
ments, then these metrically similar cells are symmetri-
cally equivalent and the observed metric differences are
due to experimental errors. The matrix approach to
symmetry provides an ideal way to evaluate the experi-
mental errors simply by averaging the set of tolerance
matrices. The resulting “error” matrix (i.e., the aver-
aged tolerance matrix) may be compared directly to the
e.s.d.’s for the refined unit cell, or it may be applied to
the refined unit cell to calculate an idealized cell reflect-
ing the exact metric symmetry. In either case, the extent
to which the refined cell parameters deviate from exact
metric symmetry is easily established.

In step 940 the crystal morphology is defined by
establishing the crystal size and faces for the primitive
cell (basis) defined in step 910. This step permits absorp-
tion corrections to be applied, if necessary, as data is
collected in connection with step 950, to permit the
experimental symmetry and conventional cell to be
defined.

In step 950, the crystal symmetry are defined, which
entails using the symmetry matrices Hs to generate
equivalent intensities (h. k. 1)eg from the collected dif-
fraction intensity data (h,k,l) using the equation:

h h
k = Hi| k
! . 1

eg Wi
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Next, if necessary, absorption corrections are calculated
in step 954 from the morphology data derived in step
940, and the corrections are applied to the equivalent
intensities to facilitate comparison thereof. In step 956,
the Laue symmetry is established using the equivalent
intensities (h,k,1)e; derived in step 952 (954), which the
present invention permits to be done without risk of
assigning a Laue group of too low a symmetry. In cer-
tain cases the intensity measurements will prove that the
Laue symmetry is less than that predicted from the
metric lattice symmetry. That is, the intensities of all the
potentially equivalent (h,k,1)’s are not equal. In these
cases, group-subgroup relationships and structural
pseudosymmetry can be determined by evaluating the
nature of the symmetry matrices in conjunction with
the intensity data. s

Unlike other methods, the matrix approach of the
present invention permits the collection of experimental
data and the assignment of the Laue symmetry with
respect to any basis. Mistakes in the Laue symmetry are
avoided since it is not necessary to do key experimental
steps out of order. In the matrix approach, all the data
required to assign the Laue symmetry are collected
before a conventional cell is determined. In contrast,
procedures currently used in diffractometry are based
on the risky practice of assuming a conventional cell
and symmetry, and then collecting data to verify the
assumption. This erroneous strategy may lead to the
assignment of a Laue group of too low symmetry.

The next step (958) in defining the crystal symmetry
is to calculate the nature and directions of the symmetry
axes. Since the values of the elements in each symmetry
matrix Hs depend upon the kind and orientation of the
element with respect to the coordinate system chosen,
the symmetry matrices themselves can be analyzed to
define both the nature and directions of all symmetry
operations of the lattice. The nature of the symmetry
axis is found by calculating the trace of the matrix:
tr(H)=Hj; +H22+Haz. The trace of the matrix is in-
variant under the similarity transformation, i.e., it is
independent of the basis chosen. The symmetry axis is
an n-fold rotation axis wherein n=1, 2, 3, 4, 6 for
tr(H)=3, —1, 0, 1, 2, respectively. Depending on the
application, the direction of each axis is given by the
solutions q of a linear algebraic equation of the form
(H-1)q=0, which is the lattice approach, or
((H—1)'—1)q=0, which is the object approach, where 1
is the identity matrix. The final step 959 in defining the
crystal symmetry is to control diffractometer 900 using
the symmetry axis data from step 958 to obtain sample
orientations for photographs of symmetry in planes of
reciprocal space for desired symmetry axes of the primi-
tive cell. As the matrix approach of the present inven-
tion enables all symmetry axes to be identified without
transformation to standard orientations, a// symmetry
axes in reciprocal space can be identified once any cell
has been determined for an unknown material.

The final step (960) in the diffractometer control
method of the present invention is to transform the
primitive cell to a standard or conventional cell. In a
first embodiment of step 960 (FIG. 11), an idealized cell
is calculated (step 962) by analyzing the cell parameter
errors determined in step 930. The idealized cell is then
reduced (step 964), and then the International Tables for
Crystallography, Vol. A, published for the International
Union of Crystallography by D. Reidel Publishing
Comp. (1983), pages 734-735, are searched (step 966) to
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find a transformation matrix to a conventional cell. This
embodiment has the advantage of eliminating all inter-
actions of the cell parameter errors with the reduction
calculations. In a second embodiment of step 960, the
nature and directions of the symmetry axes with respect
to the original basis for any primitive cell which were
experimentally determined in step 958 are also used to
obtain a transformation matrix to a standard, conven-
tional, or even a second skewed cell. When choosing a
conventional cell, any required metric constraints may
be applied separately. A set of conventions used for
choosing cell edges based on symmetry, plus additional
metric constraints when necessary, are given in the
aforementioned International Tables For Crystallogra-
phy.

Two conceptually different approaches may be used
to analyze the group of symmetry matrices and to de-
rive a standard cell transformation matrix: the lattice
approach and the object approach. Either strategy is
ideal for diffractometry. In addition, the choice of di-
rections to be used as cell edges advantageously can be
made either through analysis of dependency equations
or analysis of determinants. In obtaining a suitable trans-
formation matrix, calculations are carried out with full
knowledge of the crystal system and the nature and
directions of the symmetry axes. Thus, a transformation
matrix to a basis which is most convenient for the study
that is being carried out can always be obtained.

The lattice approach (FIG. 12) obtains a transforma-
tion matrix from a skewed cell to a standard cell by
analyzing the symmetry of the lattice. Each symmetry
matrix Hs is used directly to calculate the nature of the
symmetry axis and the direction of the axis with respect
to the lattice. After the proper three directions for the
standard cell edges have been chosen (step 1100) as
described hereinbelow, the task of obtaining a transfor-
mation matrix becomes a change-of-basis problem in
linear algebra. That is, a skewed basis is to be trans-
formed into a new standard basis. The first step (step
1200) in solving this change of basis problem is to as-
semble an augmented matrix of lattice symmetry direc-
tions, where the directions are written as columns. The
three symmetry directions chosen for the cell edges will
be the first three columns in the augmented matrix and
should be assembled with account taken of certain crys-
tallograhic conventions. These include the definition of
a right-handed coordinate system and observation of
the preferred order of the axes. As summarized below,
a transformation matrix from a skewed to a standard
cell is found by applying elementary row operations to
the augmented matrix until a new standard basis is ob-
tained (step 1300)

skewed symmetry 100
basi directions [010 | —
3SIS | (optional) |001
symmetry .
tx:e\fv directions transfox;n}atlon
asts (new basis) matrix

The new basis can be any 3X3 matrix. However,
when determining a transformation matrix to a conven-
tional unit cell, the new basis is usually the identity
matrix and the mathematical operation involved is sim-
ply the taking of the inverse of a 3 X 3 matrix by reduc-
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ing an augmented matrix to row echelon form. The

choice of basis influences the relationships between the
remaining vectors as well as the interpretation of the
last three columns to give a transformation matrix. This
is especially true for centered lattices and for the rhom-
bohedral system. Although many variations are possible
owing to the many bases that can be chosen, the rela-
tionships between the vectors is well defined and, in
practice, the determination of a transformation matrix is
straightforward for all cases. The lattice approach may
be viewed as one form of lattice or cell reduction based
on symmetry.

Because the symmetry matrices are generated by
relating a cell to itself, the symmetry operations of the
lattice are obtained. However, symmetry is often de-
scribed in terms of equivalent positions for objects. This
is the basis used for the object approach (FIG. 13). As
explained hereinabove with respect to Laue symmetry,
the matrices Hs may be viewed as matrix representa-
tions of equivalent (h,k,1)’s. Therefore, in order to shift
the emphasis from lattices or intensities (h,k,I)’s to ob-
jects or (x,y,z)’s, the nature and directions of the sym-
metry axes are calculated (step 1000) from the trans-
poses of the inverses of the symmetry matrices, (Hs—1)/,
and the three directions for the cell edges are chosen
(step 1100) as described hereinbelow. With this ap-
proach, the task of obtaining a transformation matrix is
greatly simplified because the standard basis is the iden-
tity matrix and the standard matrix for a matrix transfor-.
mation is the matrix itself. This means that the transfor-
mation matrix from any skewed cell to a conventional
cell is obtained directly by making the three directions
chosen for the cell edges rows in a matrix (step 1400).
As in the case of the lattice approach, the transforma-
tion matrix should be assembled so that the crystallo-
graphic conventions are met. The type of centering
present is defined by a value for the determinant of the
transformation matrix, except in orthorhombic systems
where additional information is sometimes required.

Whether the lattice or the object approach is used to
determine a transformation matrix to a standard cell, an
important step is the selection of three linearly indepen-
dent vectors in the proper directions to be used as direc-
tions for the cell edges (step 1100). In the triclinic sys-
tem, selection of cell edges is based on metric condi-
tions. In the monoclinic system, the only symmetry
direction, a two-fold axis, is labelled as b (the vectors a
and c are chosen so that they lie in a plane perpendicu-
lar to b and meet additional metric constraints). The
directions of the three two-fold axes in the orthorhom-
bic system are selected for the cell edges. In the rhom-
bohedral system, the directions for any two of the three
two-fold axes and the direction of a three-fold axis are
used as directions for a, b, and c, respectively. The
resulting transformation may give either metrically
rhomohedral or metrically hexagonal axes depending
on the relationships between these vectors, i.e., the basis
chosen. In the tetragonal system, the directions for two
of five possible two-fold axes are taken as the a and b
axes while the direction of a four-fold axis is selected for
the c axis. Similarly, in the hexagonal system, directions
for two of the seven two-fold axes are selected for a and
b and the direction of a six-fold axis is selected for c.
The cell edges for the cubic system are taken along

65 three linearly independent four-fold axes. Thus, when

choosing three symmetry directions to be used as cell
edges, only the tetragonal and hexagonal crystal sys-
tems appear to allow more than one possibility.
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The analysis-of-dependency-equations approach to
choosing the directions to be used as cell edges will now
be described with reference to FIG. 14. In the tetrago-
nal system, five of the matrices correspond to two-fold
axes. Since one of these five axes is parallel to a four-
fold axis, there are at most six combinations of two-fold
axes to be considered. Likewise, in the hexagonal sys-
tem, one of seven two-fold axes is parallel to a six-fold
axis, leading to at most fifteen ways to choose two of
the remaining six directions. :

The first step (step 1110) in the dependency equation

procedure is to pick any two of the possible two-fold -

axes and arbitrarily assign these as the directions for the
a and b axes. The direction used for the ¢ axis is that of
a four-fold axis in the tetragonal system and a six-fold
axis for the hexagonal system. Next (step 1120), a matrix
is generated by making the symmetry directions col-
umns, with the first three columns representing the a, b,
and c directions. Using elementary row operations, the
matrix is then reduced (step 1130) to row echelon form.
This step gives the dependency equations for the re-
maining symmetry directions with respect to the basis
directions chosen.

Simply by inspecting the dependency relations ob-
tained from the reduced row echelon form of the ma-
trix, it can be determined whether a proper basis has
been selected and, if not, which directions of the two-
fold axes should have been chosen (step 1140). Each of
the six combinations of the two-fold axes in the tetrago-
nal system leads to one of three recognizable types of
matrices. Similarly, in the hexagonal system, each of the
fifteen combinations of two-fold axes falls into one of
four recognizable forms of matrices. When the reduced
row echelon form of the matrix for the tetragonal or the
hexagonal system is

order of axis
2

O O -

or

order of axis

226 2 22 2
10 I -1 1 =2
01 0-1 -1 2 ~1
001 6 00 O

respectively, or its equivalent, the proper basis has been
chosen.

Perhaps the easiest way to understand the depen-
dency equations in the reduced row echelon form of the
matrix is through use of a diagram. For both the tetrag-
onal and hexagonal systems, the vectors projected onto
the ab plane are plotted and the respective figures are
compared with those for space groups P4/mmm and
P6/mmm in International Tables For Crystallography
(1983). With a plot of the dependency equations, the
vectors that have been chosen, and if necessary, which
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The analysis-of-dependency-equations method for
selecting the directions of symmetry axes to be used as
cell edges is similar in approach to the lattice method of
obtaining a standard cell transformation matrix, as both
methods use elementary row operations to reduce a
matrix to a row echelon form. The lattice method may
be viewed as a form of lattice reduction, whereas the
analysis-of-dependency-equations method may be
viewed as a form of symmetry reduction.

The determinant method (FIG. 15) for selecting the
directions of symmetry axes to be used as cell edges
greatly simplifies the analysis based on symmetry be-
cause data is analyzed with respect to any orientation
without having to view it, either visually or mathemati-
cally, from a standard basis. In the tetragonal system,
there are six ways to combine two two-fold axes with a
four-fold axis. Similarly, in the hexagonal system, there
are fifteen ways to combine two two-fold axes with a
six-fold axis. For each combination, a 3X3 matrix of
directions is assembled (step 1150). The determinants of
these matrices are then calculated (step 1160). The di-
rections to be used for the cell edges are found directly
from the values of the determinants of these matrices
(step 1170). In the tetragonal system, one of the six
determinants will be twice the others. If the four possi-
ble two-fold axes are labelled 1, 2, 3, and 4, the combina-
tion of 1 and 2 with a four-fold axis gives a determinant
twice the rest, and the vectors 3 and 4 should be se-
lected as directions for the conventional cell edges. As
another example, in the hexagonal system, there will be
nine combinations with a determinant of =1, three
combinations with a determinant of =2, and three com-
binations with a determinant of =+3. If the six possible
two-fold axes are labelied 1-6, and the combinations of
1-2, 1-3, and 2-3 give determinants of =+3, then the
directions for any two of the two-fold axes 4, 5 or 6 may
be used as cell edges.

Often in carrying out practical or theoretical calcula-
tions in which symmetry is involved, it is convenient to
shift basis systems. The matrix approach of the present
invention permits groups of symmetry matrices to be
obtained with respect to any selected basis. The values
of the elements in each symmetry matrix depend on the
kind and. orientation of each symmetry operation with
respect to the coordinate system chosen. As a result, the
group of symmetry matrices generated from a skewed
unit cell will be different from the group symmetry
matrices generated from either a standard cell or a sec-
ond skewed cell. Since any two cells defining the lattice
belong to the same Bravais class, there exists a homoge-
neous linear transformation which will transform one
lattice into the other and will transform the holohedry
of one lattice into the holohedry of the other. The ma-
trices may be calculated either directly using the re-
verse transformation method of the present invention;
or by application of the similarity relationship, once the
matrices are known with respect to any initial basis. The
transformation of cell 1 to cell 2 is represented by the
equation

(a
b |= 8] b
(41
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and the holohedry of cells 1 and 2 is defined by {H,}
and {H.}, respectively, where H; and H; are groups of
symmetry matrices Hs. The relationship between the
symmetry groups Hj and H; is given by the equation
H>=SH;S—1 This equation defines the effect a change
of basis has on the matrix of a linear operator. By defini-
tion, two matrices representing the same linear operator
with respect to different bases are similar.

While the present invention has been described with
reference to a particular preferred embodiment of the
method and apparatus, the invention is not limited to
the specific example given, and other embodiments will
be apparent to those skilled in the art without departing
from the spirit and scope of the invention.

What is claimed is:

1. Automatic apparatus for identifying an unknown
crystalline material comprising:

a radiation generator for irridating a sample of the

unknown material with radiation;

a radiation detector for detecting radiation received
from the irridated sample and producing electrical
output signals indicative of the detected radiation;

an electronic signal analyzer, responsive to said elec-
trical output signals generated by said radiation
detector, for producing electrical data signal out-
puts indicative of a primitive lattice cell Z of the
unknown material, said cell Z having three cell
edges ZA, AB and ZC, respectively, and three cell
angles ZAL, ZBE, and ZGA, respectively;

a first computer accessible memory in which is stored
a database comprising lattice cell data for materials
with known lattice structures;

first computer search means responsive to said elec-
tronic signal analyzer data signal outputs for auto-
matically searching said database using a converse
transformation method to generate matrices H
identifying all materials, if any, having lattice cell
structures related to cell Z; and

computer means for analyzing any matrices H gener-
ated by said first search means to identify which of
the database materials identified by the generated
matrices H match cell Z by having a lattice cell
structure identical to or in a subcell/supercell de-
rivative relationship to cell Z, any database mate-
rial so identified as matching cell Z constituting a
possible identification of the unknown crystalline
material.

2. The apparatus of claim 1 wherein a diffractometer
constitutes said radiation generator and radiation detec-
tor.

3. The apparatus of claim 2 wherein said diffractome-
ter is selected from the group consisting of an x-ray
diffractometer which irradiates the sample of the un-
known material with x-ray radiation, an electron dif-
fractometer which irradiates the sample of the unknown
material with electron radiation, and a neutron diffrac-
tometer which irradiates the sample of the unknown
material with neutron radiation.

4. The apparatus of claim 2 wherein said signal analy-
zer further comprises a controller for controlling the
orientation of the sample relative to said diffractometer.

5. The apparatus of claim 1 wherein an analytical
electron microscope constitutes said radiation generator
and radiation detector.

6. The apparatus of claim 1 wherein the materials
with known lattice structures have chemical composi-
tions, and said database further comprises element type
data identifying the chemical compositions of the mate-
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rials with known lattice structure, and said apparatus

further comprises:

means for determining the element types identifying
the chemical composition of the unknown material
and producing electrical signal outputs indicative
of the unknown material element types;

second computer search means responsive to the
electrical signal outputs produced by said element
type determining means for automatically search-
ing said database for all compounds which match
the unknown material by having the same or re-
lated element types as the unknown material;

a computer accessible second memory for saving as a
first data set the compounds matching cell Z identi-
fied by said matrix H analyzing means, and as a
second data set the matching compounds with the
same element types as the unknown material identi-
fied by said second search means; and

said computer means includes means for combining
said first and second data stored in said electronic
memory to derive all known compounds having
the same lattice cell structure and element types as
the unknown material.

7. The apparatus of claim 6 wherein said means for
determining element types comprises an energy disper-
sive x-ray spectrometer.

8. The apparatus of claim 1 wherein said first com- -
puter search means and said computer analyzing means
cooperate to:

search said database without generating said matrices
H to identify all compounds which match said cell
Z with respect to cell edges;

determine derivative subcells and supercells of said
cell Z; .

search said database without generating said matrices
H to identify all compounds which match said
derivative subcells or supercells with respect to
cell edges; and

search the compounds identified by said database
searching using said converse transformation
method to generate matrices H identifying those
compounds which match cell Z with respect to
both cell edges and cell angles.

9. The apparatus of claim 8 wherein:

the lattice cell data in said database is in the form of
reduced cell data;

a reduced form of said cell Z is generated; and

the derivative subcells and supercells are produced in
reduced form.

10. The apparatus of claim 1 wherein said converse

transformation method comprises the steps of:

a) defining maximum acceptable cell edge and angle
tolerances TOLI1, TOLI1, TOLI3 and TOLI4,
TOLIS, TOLIS for cell edges ZA AB and AC and
cell angles ZAL, ZBE and ZGA, respectively, for
the transformation of cell Z into another cell;

b) finding ail matrix triples AU, AV, AW; BU, BV,
BW; CU, CV, CW which accomplish transforma-
tion, within the corresponding ones of said maxi-
mum cell edge tolerances TOLI1, TOLI2 and
TOLI3, of the respective Z-cell edges ZA, ZB, and
ZC to corresponding edges of a database cell;

¢) finding all combinations of said matrix triples
found in said matrix-triple-finding step b) which
accomplish transformation of the respective Z-cell
angles to the corresponding angles of a database
cell within the corresponding ones of said maxi-



5,168,457

33

mum acceptable cell angle tolerances TOLI4,
TOLIS and TOLIS.

11. The apparatus of claim 10 wherein said matrix

triple finding step b) comprises the steps of:

bl) defining a set of possible matrix H elements
HEL(QJ), HEL(KK), HEL(LL), where JJ, KK,
and LL range from one to a predetermined number
NHEL;

b2) deriving dot products Z11, Z22, 733, Z23, Z13
and Z12 for cell Z as follows:

Z11=2ZA4*Z4

222=ZB*ZB

Z33=2C*ZC

Z23=ZB*ZC*cos(ZAL/RADIAN)
Z13=ZAIZC*cos(ZBE/RADIAN)
Z12=ZA*ZB*cos(ZGA/RADIAN)

RADIAN=360/2m;

for - each combination of HEL(JJ) HEL(KK)
HEL(LL):

b3) determining a symmetrical dot product TZE for
transformed cell Z, where TZEE=HEL(JJ)-
*HEL(JJ)*Z11+ HEL(KK)*HEL(KK)*Z22-
+HEL(LLY*HEL(LL)*Z33+ 2.0(HEL(KK)-
*HEL(LL)*Z223+HEL(JJ)*HEL(LL)*Z13- -
+HEL@JJ)*HEL(KK)*Z12),
b4) determining whether TZEE is greater than zero,
and if so, deriving a transformed Z-cell edge
TZEDG=VTZEE; and

b5) determining whether TZEDG is a transforma-
tion, within said respective tolerances TOLII,
TOLI2, and TOLI3, of any of Z-cell edges ZA,
ZB, ZC, to a corresponding one of the edges of the
cell for a selected one of the materials in said data-
base; and if so, saving the HEL combination as a
matrix triple AU, AV, AW; BU, BV, BW; and/or
CU, CV, CW, and saving a value TZA, TAB,
and/or TZC=TZEDG, according to which
edge(s) is (are) determined to be transformed.

12. The apparatus of claim 10 wherein said matrix
triple combination finding step c) comprises the further
steps of:

for each pair of matrix triples Au, Av, AW and BU,

BV, BW:

cl) deriving a gamma value cos6 for a transformed
cell TZ;

c2) determining whether gamma value cos6 is
greater than or equal to + 1 or less than or equal
to —1, and if not, converting gamma value cos6
to an angle value TZGA;

c3) determmmg whether TZGA is within said
maximum allowable tolerance TOLIS6, and if so,
for each matrix triple CU, CV, CW:

c4) deriving the determinant HDET of a transfor-
mation matrix defined by the combination of
matrix triples AU, AV, AW; BU, BV, BW and
CUy, CV, CW;

c5) determining whether HDET is greater than
zero, and if so, deriving an alpha value cos4 for
said transformed cell TZ;

c6) determining whether alpha value cos4 is
greater than or equal to +1 or less than or equal
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to —1, and if not, converting alpha value cos4 to
an angle value TZAL;

c7) determining whether TZAL is within said max-
imum allowable tolerance TOLI4, and if so,
deriving a beta value cos5 for said transformed
cell TZ;

c8) determining whether beta value cos$ is greater
than or equal to +1 or less than or equal to —1,
and if not, converting beta value cos5 to an angle
value TZBE,;

¢9) determining whether TZBE is within said maxi-
mum allowable tolerance TOLI4, and if so, saving
the combination of matrix triples AU, AV, AW
and BU, BV, BW as the elements Ul, V1, W1, U2,
V2, W2, U3, V3 and W3, respectively, of a trans-
formation matrix H.

13. The apparatus of claim 12 wherein said gamma

value cos6 deriving step comprises the steps of:
determining a value
TZEF1=AUWJ)*BUK)*Z11+AV())*BV(K)*Z22-
+ AW BW(K)* Z33+ (AVJY*BW(K) + AW(J)*-
BV(K))*Z23 +(AUJY*BW(K)+AW(J])-
*BUK)*Z13+(AUW)*BV(K) +AV(AV(I)-
*BU(K))*Z12; and
deriving gamma
TZA(WJ)*TZB(K)).
14. The apparatus of claim 12 wherein said alpha
value cos4 deriving step comprises the steps of:
determining a value TZEF2=BU(K)-
*CUL)*Z11+BV(K)*CW(L)*Z22+ BW(K)*CW(-
LY*Z33+(BN(K)*CW(L)+BW(K)*
CU(L)*Z23+(BUK)*CW(L)+BW((K)-
*CU(L))*Z13+(BUK)*CV(L)+ BV(K)-
*CU(L))*Z12; and
deriving alpha
TZEFR2/(TZB(K)*TZC(L)).

15. The method of claim 12 wherein said beta value

cos5 deriving step comprises the steps of:

determining value
TZEF3=AU)*CU(L)*Z l 1+AV(N*CV(L)*Z22-
+ AW CH(LY*Z33+(AV(Y*CW(L)+AW(J)*-
CUL)*Z23+(AUWN*CHW(LY+AW(J)-
*CULY*Z13+(AUW)*CH(LY+AV()-
*CU(L))*Z12; and

deriving beta
TZAWN*TZC(L)).

16. Automated apparatus for symmetry analysis of a

crystalline material compfising:

a radiation generator for irridating a sample of the
crystalline material with radiation;

a radiation detector for detecting radiation receiving
from the irridated sample and producing electrical
output signals indicative of the detected radiation;

a signal analyzer responsive to said electrical output
signals produced by said radiation detector for
producing edge data signals ZA, AB and ZC and
angle data signals ZAL, ZBE and ZGA defining
any primitive lattice cell Z of the material;

means for generating all symmetry matrices Hs
which transform said cell Z into itself within prede-
termined maximum cell edge and angle parameter
tolerances TOLI1, TOLI2, TOLI3 and TOLI4,
TOLIS, TOLIS, respectively;

means for determining the metric symmetry using
symmetry matrices Hs; and

means for determining the crystal symmetry using
symmetry matrices Hs;

value cos6=TZEF1/(-

cosd =-

value

value cosS=TZEF3/(-
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said symmetry matrix generating means being opera-
tive to find:
all matrix triples AU, AV, AW, BU, BV, BW; CU,
CV, CW which accomplish transformation of
the respective Z-cell edges to within the corre-
» sponding ones of said maximum cell edge toler-
ances; and
all combinations of said matrix triples which ac-
complish transformation of the respective Z-cell
angles to within the corresponding ones of said
maximum cell angle tolerances.

17. The apparatus of claim 16 wherein a diffractome-
ter constitutes said radiation generator and radiation
detector.

18. The apparatus of claim 17 wherein said diffrac-
tometer is selected from the group consisting of an x-ray
diffractometer which irradiates the sample of the mate-
rial with x-ray radiation, an electron diffractometer
which irradiates the sample of the material with elec-
tron radiation, and a neutron diffractometer which irra-
diates the sample of the material with neutron radiation.

19. The apparatus of claim 17 wherein said signal
analyzer further comprises a controller for controlling
the orientation of the sample relative to said diffractom-
eter.

20. The apparatus of claim 16 wherein an analytical
electron microscope constitutes said radiation generator
and radiation detector.

21. The apparatus of claim 16 wherein said symmetry

matrix generating means operates to find matrix triples-

by:
defining a set of possible matrix H elements HEL(JJ),
HEL(KK), HEL(LL), where JJ, KK, and LL
range from one to a predetermined number NHEL;
determining dot products Z11, Z22, Z33, Z23, Z13
and Z12 for cell Z as follows:

Z11=ZA*ZA

Z22=7B*ZB

Z33=ZC*ZC
Z23=ZB*ZC*0s(ZAL/RADIAN)

Z13=ZA*ZC*cos(ZBE/RADIAN)

Z12=ZA*ZB*cos(ZGA/RADIAN)
RADIAN=360/2m;

for each combination of HEL(JJ) HEL(KK)

HEL(LL):

determining a symmetrical dot product TZEE for
transformed cell Z, where TZEE=HEL(JJ)-
*HEL(JNH)*Z11+ HEL(KK)*HEL(KK)*Z22-
+HEL(LLY*HEL(LL)*Z33+2.0(HEL(KK)—-
*HEL(LL)*Z23+HEL(JJ)*i HEL(LL)*Z13-
+HEL(JJy*HEL(KK)*Z12),

determining whether TZEE is greater than zero,
and if so, deriving a transformed Z-cell edge
TZEDG =VTZEE; and

determining whether TZEDG is a transformation,
within said respective tolerances TOLII,
TOLI2, and TOLI3, of any Z-cell edges ZA,
AB, ZC; and if so, saving the HEL combination
as a matrix triple AU, AV, AW; BU, BV, BW;
and/or CU, CV, CW, and saving a value TZA,
TZB and/or TZC=TZEDG, according to
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which edge(s) is (are) determined to be trans-
formed.

22. The apparatus of claim 16 wherein said symmetry
matrix generating means operates to find matrix triple
combinations by:

for each pair of matrix triples AU, AV, AW and BU,

BV, BW:

deriving a gamma value cos6 for a transformed cell

determining whether gamma value cos6 is greater
than or equal to +1 or less than or equal to —1,
and if not, converting gamma value cos6 to an
angle value TZGA;

determining whether TZGA is within said maxi-
mum allowable tolerance TOLI6, and if so for
each matrix triple CU, CV, CW:

deriving the determinant HDET of the transforma-
tion matrix defined by the combination of matrix
triples AU, AV, AW; BU, BV, BW and CU, CV,
CW;

determining whether HDET is equal to one, and if
s0, deriving an alpha value cos4 for said trans-
formed cell TZ;

determining whether alpha value cos4 is greater
than or equal to + 1 or less than or equal to —1,
and if not, converting alpha value cos4 to an
angle value TZAL;

determining whether TZAL is within said maxi-
mum allowable tolerance TOLI4, and if so, de-
riving a beta value cos5 for said transformed cell
TZ;

determining whether beta value cos5 is greater
than or equal to +1 or less than or equal to —1,
and if not, converting beta value cos5 to an angle
value TZBE;

determining whether TZBE is within said maxi-
mum allowable tolerance TOLI4, and if so, sav-
ing the combination of matrix triples as the ele-
ments Ul, V1, W1, U2, V2, W2, U3, V3 and W3
of a symmetry matrix Hs.

23. The apparatus of claim 22 wherein said gamma
value cos6 is derived by:

determining a value

TZEF1=AUJ*BUK)*Z11 + AV(J)*BV(K)*Z22-
+ AWV BW(K)*Z33+(AV(J)* BW(K) + A W(J)*-
BV(K)*Z23+(AUJ)*BW(K)+AW(J)-
*BUK)*Z13+(AU(J)*BV(K)+AV(J)-
*BU(K))*Z12; and .
deriving gamma  value
TZA(J)*TZB(K)).
24. The apparatus of claim 22 wherein said alpha
value cos4 is derived by:

determining value
TZEF2= BU(K)*CU(L)‘Z 114+BW(K)*CV(L)*-
222+ BW(K)*CW(L)*Z33 +(BV(K)*CW(L)+-
BW(K*CV(L))*Z23+(BUK)*CW(L)+BW(K-
PCUWL)*Z13+(BUK*CV(L)+BV(K)-
*CU(L))*Z12; and

deriving alpha

TZER2/(TZB(K)*TZC(L)).

25. The apparatus of claim 22 wherein said beta value
cos$5 is derived by:

determining value

TZEF3=AUW*CU(L)*Z l 14+A4AVN)*CV(L)y*Z22-
+AWI)*CW(L)*Z33 +(AVI)* CW(L)+ AW()*-
—CVL)N*Z23+(AUW)*CW(L)Y+AW()-
*CUL)*Z13+(AUW)*CV(L)+ AV(J)-
*CU(L))*Z12; and

cos6=TZEF1/(-

value cos4=-
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deriving beta value

TZA)*TZC(L)).

26. Automated apparatus for comparing two lattices
of crystalline materials to determine whether they have
a predetermined lattice structure relationship therebe-
tween, the apparatus comprising:

at least one radiation generator for irridating samples

of the crystalline materials with radiation;

at least one radiation detector for detecting radiation

received from the irridated samples and producing

electrical output signals indicative of the detected
radiation;

a signal analyzer responsive to said electrical output

signals produced by said at lest one radiation detec-

tor for determining primitive lattice cells Y and Z,

respectively, for the two materials, said cells Y and

Z having three cell edges YA, YB, YC and ZA,

AB and AC, respectively, and three cell angles

YAL, YBE, YGA and ZAL, ZBE and ZGA, re-

spectively;

means for generating all matrices H, if any, which

transform cell Z into cell Y within predetermined

maximum cell edge and angle tolerances TOLII,

TOLI2, TOLI3 and TOLI4, TOLIS5, TOLI6, re-

spectively; and

means for determining whether any matrices H:

1) have integer matrix elements and a determinant
HDET=1, thereby determining that the two
materials have the same lattice structure; or

2) either a) have integer matrix elements, a determi-
nant HDET > 1, and will transform cell Z to cell
Y; or b) have an inverse matrix H' which has
integer elements, a determinant HDET 1, and
will transform cell Y to cell Z, thereby determin-
ing that the two materials have lattice structures
which are in a derivative subcell or supercell
relationship; or

3) both a) have at least one fractional matrix ele-
ment and will transform cell Z to cell Y; and b)
and an inverse matrix H' which also has at least
one fractional matrix element and will transform
cell Y to cell Z, thereby determining that the two
materials have lattice structures which have a
composite relationship.

27. The apparatus of claim 26 wherein at lest one
diffractometer constitutes said at least one radiation
generator and radiation detector.

28. The apparatus of claim 27 wherein said at least
one diffractometer is selected from the group consisting
of an x-ray diffractometer which irradiates a material
sample with x-ray radiation, an electron diffractometer
which irradiates a material sample with electron radia-
tion, and a neutron diffractometer which irradiates a
material sample with neutron radiation.

29. The apparatus of claim 27 wherein said signal
analyzer further comprises a controller for controlling
the orientation of the samples relative to said at least
one diffractometer.

30. The apparatus of claim 26 wherein at lest one
analytical electron microscope constitutes said at least
one radiation generator and radiation detector.

31. The apparatus of claim 26 wherein said means for
generating matrices H operates by:

finding all matrix triples AU, AV, AW; BU, BV, BW;

CU, CV, CW which accomplish transformation of

the respective Z-cell edges to the corresponding

Y-cell edges within said maximum cell edge toler-

ances;

cos5=TZEF3/(-
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finding all combinations of said matrix triples found in
said matrix triple finding step which accomplish
transformation of the respective Z-cell angles to
the corresponding Y-cell angles within said maxi-
mum cell angle tolerances.

32. The apparatus of claim 31 wherein matrix triples

are found by:

defining a set of possible matrix H elements HEL(JJ),
HEL(KK), HEL(LL), where JJ, KK, and LL
range from one to a predetermined number NHEL;

determining dot products Z11, Z22, Z33, Z23, Z13
and Z12 for cell Z as follows:

5

10

Z11=ZA*ZA
15 Z22=ZB*ZB
Z33=ZC*2C

Z23=2ZB*ZC*%0s(ZAL/RADIAN)

2 Z13=ZA*ZA%0s(ZBE/RADIAN)

Z12=ZAZB*0s(ZGA/RADIAN)

RADIAN=360/2m;
25
for each combination of HEL(JJ) HEL(KK)
HEL(LL):
determining a symmetrical dot product TZEE for
transformed cell Z, where TZEE=HEL(JJ)-
30 *HEL(JN)*Z114+HEL(KK)*HEL(KK)*Z22-
+HEL(LLY*HEL(LL)*Z33+2.0(HEL(KK)*
HEL(LLY*Z23+HEL(JJ)S8HEL(LL)*Z13-
+HEL(J)*HEL(KK)*Z12);
determining whether TZEE is greater than zero,
35 and if so, deriving a transformed Z-cell edge
TZEG=VTZEE,; and
determining whether TZEDG is a transformation,
within said respective tolerances TOLII,
TOLI2, and TOLI3, of any of Z-cell edges ZA,
40 ZB, ZC, to a corresponding one of the Y-cell
edges YA, YB, YC; and if so, saving the HEL
combination as a matrix triple AU, AV, AW,
BU, BV, BW; or CU, CV, CW, and saving a
value TZA, TAB, and/or TZC=TZEDG, ac-
45 cording to which edge(s) is (are) determined to
be transformed.
33. The apparatus of claim 31 wherein matrix triple
combinations are found by:
for each pair of matrix triples AU, AV, AW and BU,
50 BV, BW:
deriving a gamma value cos6 for a transformed cell
TZ,
determining whether gamma value cos6 is greater
than or equal to +1 or less than or equal to, —1,
and if not, converting gamma value cos6 to an
angle value TZGA;
determining whether TZGA is within said maxi-
mum allowable tolerance TOLIS6, and if so, for
each matrix triple CU, CV, CW:
deriving the determinant HDET of the transforma-
tion matrix defined by the combination of matrix
triples AU, AV, AW; BU, BV, BW and CU, CV,
CW;
determining whether HDET is greater than zero,
and if so, deriving an alpha value cos4 for said
transformed cell TZ;
determining whether alpha value cos4 is greater
than or equal to +1 or less than or equal to —1,

55
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and if not, converting alpha value cos4 to an
angle value TZAL,;
determining whether TZAL is within said maxi-
mum allowable tolerance TOLI4, and if so, de-
riving a beta value cos5 for said transformed cell
TZ;
determining whether beta value cos5 is greater
than or equal to +1 or less than or equal to —1,
and if not, converting beta value cos5 to an angle
value TZBE;
determining whether TZBE is within said maxi-
mum allowable tolerance TOLI4, and if so, sav-
ing the combination of matrix triples as the ele-
ments UL, V1, W1, U2, V2, W2, U3, V3 and W3
of a transformation matrix H.
34. The apparatus of claim 31 wherein said gamma
“value cos6 is derived by:
determining a value
1+AVI)*
BV(K)*Z22+AW(J)Y* BW(K)*Z33+(4AV(J)*BW(K-
)+AWU)*BV(K))*Z23 +(AUJ)* BW(K) + AW(K)-
*BUK))*Z13+(AU)*BV(K)+ A V(J)-
*BU(—K))*Z12; and
deriving gamma
TZA(J)* TZB(K)).
35. The apparatus of claim 31 wherein said alpha
value cos4 is derived by:
determining a value
TZEF2=BUK)Y*CU(L)*Z114+BV(K)*CWV(L)*Z2-
2+ BW(KY*CW(L)*Z33+(BV(K)*CW(L)+BW(-
K)*—CWV(L)*Z23+(BUK)*CW(L)+ BW(K)-
*CUL))*Z13+(BUK)*CV(L)+ BV(K)-
*CU(L))*Z12; and
deriving alpha
TZEF2/(TZB(K)*TZC(L)).
36. The apparatus of claim 31 wherein said beta value
cos5 is derived by:
determining a value
TZEF3=AUU)*CU(LY*Z11+AV()*CV(L)*Z22-
+ AW CW(L)*Z33+(AVN*CW(L)+AW(J)*-
—CV(L)*Z23+(AUWY*CW(L)+AW(J)-
*CUWLN*Z13+ (AU CV(LY+AV()-
*CU(L))*Z12; and
deriving beta
TZAWD*TZC(L)).
37. Automatic apparatus for identifying an unknown
crystalline material comprising:
an electronic signal analyzer, responsive to electrical
signals generated by detecting radiation received

TZEF1=AUJ)*BUK)*Z-

value cos6=TZEF1/(-

cos4=-

value

value cosS=TZEF3/(-
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from a sample of the unknown material which has
been irradiated by radiation, for producing electri-
cal data signal outputs indicative of a primitive
lattice cell Z of the unknown material, said cell Z
having three cell edges ZA, ZB and ZC, respec-
tively, and three cell angles ZAL, ZBE, and ZGA,
‘respectively;

a first computer accessible memory in which is stored
a database for materials with known lattice struc-
tures . and chemical compositions, said database
comprising lattice cell data and element type data
identifying the lattice structures and chemical com-
positions, respectively, of the database materials;

first computer search means responsive to said elec-
tronic signal analyzer data signal outputs for auto-
matically searching said database using a converse
transformation method to generate matrices H
identifying all materials, if any, having lattice cell
structures related to cell Z;

computer means for analyzing any matrices H gener-
ated by said first search means to identify which of
the database materials identified by the generated
matrices H match cell Z by having a lattice cell
structure identical to or in a subcell/supercell de-
rivative relationship to cell Z, any database mate-
rial so identified as matching cell Z constituting a
possible identification of the unknown crystalline
material;

means for determining the element types identifying
the chemical composition of the unknown material
and producing electrical signal outputs indicative
of the unknown material element types;

second computer search means responsive to the
electrical signal outputs produced by said element
type determining means for automatically search-
ing said database for all compounds which match
the unknown material by having the same or re-
lated element types as the unknown material;

a computer accessible second memory for saving as a
first data set the compounds matching cell Z identi-
fied by said matrix H analyzing means, and as a
second data set the matching compounds with the
same element types as the unknown material identi-
fied by said second search means; and

said computer means includes means for combining
said first and second data sets stored in said elec-
tronic memory to derive all known compounds
having the same lattice cell structure and element

types as the unknown material.
* * * * *



